(2t+1)(t-4)=t^2-4t-6

Simple and best practice solution for (2t+1)(t-4)=t^2-4t-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2t+1)(t-4)=t^2-4t-6 equation:



(2t+1)(t-4)=t^2-4t-6
We move all terms to the left:
(2t+1)(t-4)-(t^2-4t-6)=0
We get rid of parentheses
-t^2+(2t+1)(t-4)+4t+6=0
We multiply parentheses ..
-t^2+(+2t^2-8t+t-4)+4t+6=0
We add all the numbers together, and all the variables
-1t^2+(+2t^2-8t+t-4)+4t+6=0
We get rid of parentheses
-1t^2+2t^2-8t+t+4t-4+6=0
We add all the numbers together, and all the variables
t^2-3t+2=0
a = 1; b = -3; c = +2;
Δ = b2-4ac
Δ = -32-4·1·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-1}{2*1}=\frac{2}{2} =1 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+1}{2*1}=\frac{4}{2} =2 $

See similar equations:

| 3y+11y=-16 | | 8x-3=15+5x= | | 3x+3x=78 | | X-2+2x=6+2x | | 3(x-4)^(3)-5=19 | | 13x-4x-33=-10x+34 | | -5/2x-3=-7/4x | | 3x+17+0.5x−5=180 | | 13x-4x-33=-10x | | 0.8(4-a)=(a-10) | | (x−8)^3/4=8 | | 48x-41=6(7x-6)+6x-5 | | 18=23x+50 | | 8y+10=35+3y | | (3x+6)*(9x-13)=0 | | -3x+25=2x-10 | | -2(5+5n)=8 | | 10z-15-4z=8-2z-15= | | x−10+4x−10=90 | | 3/4n-5=1/4n-3 | | (a-2)(a-7)=-6 | | 10z-15-4z=8-2z-15+ | | 48x-41=42x-36+6x-5 | | 3.50p+250=5p+175 | | -1/2(9x+42)-5x=-70 | | 48+2x=20 | | 0.5y+5+-0.75=0 | | 8x+6=8x+45 | | -9×+10x-8=-6 | | 3w+1=3w+8= | | 6(3x-1)-3(3x-17)=4(2x+5) | | |x-9|+3=7 |

Equations solver categories